Note:
[1] = These operations rely on the “Amortized” part of “Amortized Worst Case”. Individual actions may take surprisingly long, depending on the history of the container.
[2] = For these operations, the worst case n is the maximum size the container ever achieved, rather than just the current size. For example, if N objects are added to a dictionary, then N-1 are deleted, the dictionary will still be sized for N objects (at least) until another insertion is made.
List
n: Number of Elements inside list
k: How many elements to operate
| Operation | Average Case | Amortized Worst Case | |
|---|---|---|---|
| Copy | O(n) | O(n) | |
| Append[1] | O(1) | O(1) | |
| Insert | O(n) | O(n) | |
| Get Item | O(1) | O(1) | |
| Set Item | O(1) | O(1) | |
| Delete Item | O(n) | O(n) | |
| Iteration | O(n) | O(n) | |
| Get Slice | O(k) | O(k) | |
| Del Slice | O(n) | O(n) | |
| Set Slice | O(k+n) | O(k+n) | |
| Extend[1] | O(k) | O(k) | |
| Sort | O(n log n) | O(n log n) | |
| Multiply | O(nk) | O(nk) | |
| x in s | O(n) | ||
| min(s), max(s) | O(n) | ||
| Get Length | O(1) | O(1) |
Collections.deque
n: Number of Elements inside queue
k: How many elements to operate
| Operation | Average Case | Amortized Worst Case |
|---|---|---|
| Copy | O(n) | O(n) |
| append | O(1) | O(1) |
| appendleft | O(1) | O(1) |
| pop | O(1) | O(1) |
| popleft | O(1) | O(1) |
| extend | O(k) | O(k) |
| extendleft | O(k) | O(k) |
| rotate | O(k) | O(k) |
| remove | O(n) | O(n) |
Dictionary
n: Number of Elements inside dictionary
| Operation | Average Case | Amortized Worst Case |
|---|---|---|
| Copy[2] | O(n) | O(n) |
| Get Item | O(1) | O(n) |
| Set Item[1] | O(1) | O(n) |
| Delete Item | O(1) | O(n) |
| x in s O(1) | O(n) | |
| Iteration[2] | O(n) | O(n) |
Set
n: Number of Elements inside set
| Operation | Average Case | Amortized Worst Case |
|---|---|---|
| x in s | O(1) | O(n) |
| Union s|t | O(len(s)+len(t)) | |
| Intersection s&t | O(min(len(s), len(t)) | O(len(s) * len(t)) |
| Multiple intersection s1&s2&..&sn | (n-1)*O(l) where l is max(len(s1),..,len(sn)) | |
| Difference s-t | O(len(s)) | |
| s.difference_update(t) | O(len(t)) | |
| Symmetric Difference s^t | O(len(s)) | O(len(s) * len(t)) |
| s.symmetric_difference_update(t) | O(len(t)) | O(len(t) * len(s)) |
Math Operations
| Operation | Input | Time Complexity |
|---|---|---|
| Multiplication | Two n-digit numbers | O(n2), and O(n1.585) for large numbers |
| Division | Two n-digit numbers | O(n2) |
Tricks
num » 1 is faster than num // 2
num * num is faster than num ** 2